1.3. Sequences and (heir Lumrts. (+ Series) 74%.
Qef. Geometric Sequence : Sequence of numbers that follow
He pattern of multiflying by a fixed
number to get the nest number.
Thm.1.11. the Sequence frⁿ3
(a) Converges to 0 if (N<1
(b) Converges to 1 if Y=1
(c) diverges fon Y < 1, Y>1
Def. The sequence fong erist. then we define
=> (D) Partial Sums: S_M = 0, + 0, + ...+ 0_M =
$$\frac{1}{2}$$
 0,
(i) Series: $f_{MS} S_{M} = \frac{1}{2}$ 0,
(j) Series: $f_{MS} S_{M} = \frac{1}{2}$ 0,
(

1.4. The Number C. Def. Number e is the limit of Sequence Cn. where $C_m = \left(1 + \frac{1}{n}\right)^n$ Elet's show that On converges. () Monotonicity of C_n : Let's think n+1 numbers, which are $(1+\frac{1}{n}), (1+\frac{1}{n}), \cdots, (1+\frac{1}{n}), 1$ n times. n is positive, so each terms are positive. Let's use A-G Tnequality $AM = \frac{N \cdot \left(H + \frac{1}{n}\right) + 1}{n + 1} = \frac{n + 1 + 1}{n + 1} = \left(H + \frac{1}{n + 1}\right) = AM \ge GM \circ BZ$ $GM = \left\{\left(H + \frac{1}{n}\right)^{n}\right\}^{n + 1}$ $AM^{n+1} \ge GM^{n+1}$ So, $(H_{\overline{HH}})^{N+1} \ge (H_{\overline{H}})^{N}$, $C_{H} \ge C_{N}$. 2. Boundaress of e_n : let define $f_m = (H + m)^{n+1}$. we know that (H+)>1, So en<fn. \bigotimes let's think not numbers, which are $(1-\frac{1}{2}), \dots, (1-\frac{1}{2}), 1$ lef's use AM-GM inequality. n times, $A_{M} = \frac{n(l-\frac{1}{m})+l}{m(l-\frac{1}{m})+l} = \frac{m}{m+l} + A_{M} + A_{M$

$$\begin{array}{c} G_{M} = \left\{ (\underline{r} - \frac{1}{M})^{n} \right\}^{\frac{1}{M}} & \int_{\mathbb{C}^{M-1}}^{\mathbb{C}^{M}} 2 G_{M}} \\ & SO, \left(\frac{n}{M} \right)^{\frac{1}{M}} \ge \left(\frac{n}{M} \right)^{\frac{1}{M}} \ge \left(\frac{n}{M} \right)^{\frac{1}{M}} \ge \left(\frac{n}{M} \right)^{\frac{1}{M+1}} \\ & \Leftrightarrow \left((\underline{r} + \frac{n}{M} \right)^{\frac{1}{M+1}} \right) \stackrel{(\underline{r} + \frac{n}{M} \right)^{\frac{1}{M+1}}}{\\ & (\underline{r} + \frac{n}{M} \right)^{\frac{1}{M+1}} \otimes \left(\frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \ge \left(\frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \ge \left(\frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \otimes \left(\frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M+1}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M} \right)^{\frac{1}{M}} \\ & G_{M} = \left(\frac{n}{M} + \frac{n}{M}$$

Calculus

Series Convergence Tests

Test	Series	Converges	Diverges	Remarks
For Divergence (TFD)	$\sum_{n=1}^{\infty} a_n$	CANNOT show convergence	$\lim_{n\to\infty}a_n\neq 0$	always check first!
Geometric	$\sum_{n=1}^{\infty} ar^{n-1}$	<i>r</i> < 1	$ r \ge 1$	$\operatorname{sum} = \frac{\operatorname{first term}}{1 - r}$
Telescoping	$\sum_{n=1}^{\infty} (b_n - b_{n+k})$	$\lim_{n\to\infty} b_{n+k} = L$ L has to be finite	$\lim_{n\to\infty} b_{n+k}$ D.N.E. or inf	write out serval terms then cancel stuff to find paritial sum
P-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	<i>p</i> > 1	$p \leq 1$	famous $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$
Integral	$\sum_{n=1}^{\infty} a_n$ $a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) dx$ Converges	$\int_{1}^{\infty} f(x) dx$ Diverges	f(x) has to be positive, continuous & decreasing for $x \ge 1$
Direct Comparison (DCT)	$\sum_{n=1}^{\infty} a_n$ $a_n > 0$	$\sum_{n=1}^{\infty} a_n \leq a \text{ known} \\ \text{convergent}$	$\sum_{n=1}^{\infty} a_n \ge a \text{ known} \\ \text{divergent}$	try to use <i>p</i> -series or geometric series to compare
Limit Comparison (LCT)	$\sum_{n=1}^{\infty} a_n \\ a_n > 0$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0 \&$ $\sum_{n=1}^{\infty} b_n \text{ is known to}$ $be convergent$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0 \&$ $\sum_{n=1}^{\infty} b_n \text{ is known to} \\ b_n \text{ be divergent}$	this version of LCT is inconclusive if $L = O$ or $L = \infty$
Alternating (AST)	$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ $b_n \ge O$	(1.) $\lim_{n \to \infty} b_n = 0$ (2.) $b_{n+1} \le b_n$	use TFD $\lim_{n\to\infty} (-1)^{n-1} b_n \neq 0$	$(-1)^{n-1} = \cos\left((n-1)\pi\right)$
Ratio	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L < 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L > 1$	inconclusive if $L = 1$ great for ! and () ⁿ
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty}\sqrt[n]{ a_n } = L < 1$	$\lim_{n\to\infty}\sqrt[n]{ a_n } = L > 1$	inconclusive if $L = 1$ great for () ⁿ
If $\sum_{n=1}^{\infty} a_n $ converges, then $\sum_{n=1}^{\infty} a_n$ is absolute convergent (which implies $\sum_{n=1}^{\infty} a_n$ also converges)				
If $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} a_n $ diverges, then $\sum_{n=1}^{\infty} a_n$ is conditional convergent				

2.6. Sequence of Flunctions and Their Limits. lef. A sequence of functions : List of functions f. f.f. ... with a common domain D The sequence of functions for converges poinduise to a function f on D : front for each d E.D ET HAED, HETO, FINEN S.L. IF NON, then 1 fn (20-fGU/CE. The sequence of functions for converges uniformly to a function f on D : VETO, FNE/NS. L. if n>N, then $|f_m(\alpha) - f(\alpha)| \leq \varepsilon$ for all $A \in D$. Thm. 2.11. Let ffm? be a sequence of functions, each confinuous on the closed interval [a,b]. If Ifm? converges uniformly to f on [a,b], then fis continuous on [a,b] Thm. 2.12. Suppose {fn}, {gn} are uniformly convergent sequences of Constrained Francisco on Tabi and Tabi

2.6. Sequences of Frunchions and Their Limits 70/4.
Def. The sequence of functions find exist. then we define
=> ① Portial Sums: Sn = fit fit + ...+ fn =
$$\frac{\pi}{L=7}$$
 fit
2) Series: fn So Sn = $\frac{\pi}{L=7}$ fm
If U.Stol exist. denote it by f(a),
then we say the series converges to fave of d.
We write $\frac{\pi}{L=0}$ fr(a) = fra).
If the sequence of partial sums converges uniformly on D.
then we say the series of the form $\frac{\pi}{L=0}$ and (A-O)³
. Coefficient : The numbers Con.
. Conder of the power series : The number Q.
Thrn. 2.13. For a power series $\frac{\pi}{L=0}$ On (A-O)³, one of following
must hold
(b) *w* only for d=a.
(c) There is a positive number R, called the
yeating of converges absolubly for every d.
(b) *w* outgets of converges for [A-O] < R.
In cuse (c), the series fight on might not
converge of d=ark
Thrn 2.14. A power series $\frac{\pi}{L=0}$ (and a find)
where 0< r

(NM, J. (. A function is diffierentiable of a Implies the function is continuous at a. A Some Uses for the Derivatives. Speed = Rate of change of distance as a function of time. position Vebcity = time ~ // horizabl height " Slope = 11 amount of electric charge Current = Lime 1-

 $\{f(n)\}$ Thm3.6. Quotient Rule. If f and g are differentiable of d and J(1)=0, then their Quotient is differentiable at of and $\left(\frac{f}{g}\right)(d) = \frac{f'_{(6)}g(d) - f(x)g'(d)}{g_{(6)}}$

3.2. Differential Rules. 144.
Thm 3.17. Chain Rule.
If f is differentiable of ghu) and g is differentiable
at d, then fig is differentiable of d, and
(fig)(U) = f((ghu)) g(n).
Thm. 3.8. Rower Rule for Rultimal exponents.
For every variant number v+0, and
for every variant number v+0, and
for every dro, (d') = v-1
3.3. Derivative of e^d and logd.
Thm. (loga)' = d (n70) / (log(n))' = d (n+0)
Thm. 3.9. (e^d)' = e^d.
Thm. (loga)' = d (n70) / (log(n))' = d (n+0)
Thm. 3.10. Rower Rule (complete ()
If v+0 and aro, then A is differentiable
Ound (a^v) = va^{v+1}.
Thm. 3.11. Suppose y is a function of a for which
y' = ky
where k is a constant. Then there is a constant.

$$g(pf)$$
. we need to show that the function $\frac{1}{2}$ is a constant.
 $g(pf)$. we need to show that the function $\frac{1}{2}$ is constant.
 $g(pf)$. we need to show that the function $\frac{1}{2}$ is constant.
 $g(pf)$. we need to show that the function $\frac{1}{2}$ is constant.
 $g(pf)$. we need to show that the function $\frac{1}{2}$ is constant.
 $g(pf)$. we need to show that the function $\frac{1}{2}$ is constant.
 $g(pf)$. we need to show that the function $\frac{1}{2}$ is constant.
 $g(pf)$. we need to show that the function $\frac{1}{2}$ is constant.
 $g(pf)$. we need to show that $\frac{1}{2}$ e^{tot} + $\frac{1}{2}$ (H) e^{tot} = 0.
 $\int_{0}^{1} \frac{1}{2}$ ($\frac{1}{2}$) = 0.

3.4. Derivatives of Trigonometric Functions.
Thm. 3.12.
$$\sin t = \cosh t$$
 and $\cos t = -\sin t$
Thm. 3.13. Denote by f a solution of $f''_{+}f=0$
for which fcc and free are both 0 at
some point C. Then fills of for all f.
 pB . $f''_{+}f=0$. multiply both sites by $=f'$.
 $=> 2f'f' + 2ff'$ $f''_{-}=0$.
By $(\bigcirc (f^{+})' = 2ff')$ $f''_{-} = f^{-}$ for every A.
 SO . $f'=f=0$ for every A.
Thim. 3.14. Suppose f, and f_{-} are two solutions
of $f''_{+}f=0$ and blud there is
a number C for which f(c) = f_{+}(c) and
 $f'(G) - f_{+}(c)$.
Then $f(t) = f_{+}(t)$ for every A.
 $f(t) = f = f + f_{-}$
 $then, f(c) = 0$. $f(c) = 0$. By Thim 3.13,
 $f(t) = 0$ for every f. SO. $f_{+}(t) = f_{+}(t)$
Then S.15. Addition the for the sime and come.
 $\cos (ft) = \cos \cos - \sin \sin \cos$.
 $Sim (ft) = sint \cos 5 + 5 + 5 + 5$.

Thm. 3.16. Suppose f, and f, are two solutions of fr-f=0 and that there is a number C for which fi(c) = fa(c) and $f_1'(c) = f_2'(c)$. Then f. (t)= f2(t) for every f.

3.5. Derivatives of Power Series.
Thm. 3.17. Term - by -term differentiation.
If the power series
$$f_{12} = \sum_{n=0}^{\infty} Q_n d^n$$

converges on $-R < d < R$,
then f is differentiable on $(-R, R)$, and
 $f_{1(d)} = \sum_{n=1}^{\infty} n Q_n d^{n-1}$.