1. Numbers and Limits.
\n1. A. The
\n1. The Trique
\n2. The Triangle inequality:
$$
|a+b| \le |a|+|b|
$$

\n3. The A. G inequality: $\frac{1}{1000} \le |a|+|b|$
\n4. The Trique
\n4. G
\n4. The
\n4. G
\n4. The
\n4. G
\n4. The
\n4. G
\n4. The
\n4. G
\n4. A. A. The
\n4. A. A. The
\n4. A. B. The
\n4. B. The
\n4.

1.3. Sequences and their Limits. (+ Series)
$$
\frac{1}{2}
$$
.
\nThm1.6. Suppose $\{a_n\}$ and $\{b_m\}$ are correspond, and $\frac{1}{2}$ for $a_m = 0$, $\frac{1}{2}$ for $a_m = 0$, $\frac{1}{2}$ for $a_m = 0$. Then,
\n(a) $\frac{1}{2}$ for $a_m = 0$ for a

1.3. Sequences and 1 her Lumts. (4 5er53) 146.
\nLet. Geometric sequence: Square of numbers that follow
\nHe pattern of multiplying by a first
\n1. 60. Converges to 0 if (1151)
\n(b) Converges to 0 if (1151)
\n(c) diverges to 1 if Y = 1
\n10e². The sequence
$$
\{0, 1\}
$$
 exists, then we define
\n \Rightarrow 0. Partial sums: $S_{n} = 0, + 0, + ... + 0, = \frac{n}{n-1}0$;
\n \Rightarrow 0. Partial sums: $S_{n} = 0, + 0, + ... + 0, = \frac{n}{n-1}0$;
\n \Rightarrow 0. Partial sums: $S_{n} = 0, + 0, + ... + 0, = \frac{n}{n-1}0$;
\n \Rightarrow 0. Partial sums: $S_{n} = 0, + 0, + ... + 0, = \frac{n}{n-1}0$;
\n \Rightarrow 0. Partial sums: $S_{n} = 0, + 0, + ... + 0, = \frac{n}{n-1}0$;
\n \Rightarrow 0. Partial sums: $\frac{1}{2}S_{n} = \frac{1}{2}S_{n}$
\n \Rightarrow 0. Partial sums: $\frac{1}{2}S_{n} = \frac{1}{2}S_{n}$
\n \Rightarrow 0. Partial sums: $\frac{1}{2}S_{n} = \frac{1}{2}S_{n}$
\n \Rightarrow 0. Partical terms: $\frac{1}{2}S_{n} = \frac{1}{2}S_{n}$
\n \Rightarrow 0. Partical terms: Suppose that for all n, ∞ 0, $\frac{1}{2}S_{n} = \frac{n}{2}S_{n}$
\n \Rightarrow 0. $\frac{$

1.4. The Number C. Def. Number e is the limit of Sequence En. Where $C_n = (1 + \frac{1}{n})^n$ Blet's show that C_n convenges. D Monotonicity of P_n : Let's think n_1 numbers,
which are $\frac{(1+\frac{1}{n})}{n+\overline{m}es}$ n is positive. So each terms are positive. Let's use A-G Tneguality $AM = \frac{n.(H + 1) + 1}{n+1} = \frac{m+1}{n+1} = (4 - 1)$
 $GM = \left\{ (H + 1) \right\}^{n+1}$
 $GM = \left\{ (H + 1) \right\}^{n+1}$ $So,$ $(H\frac{1}{nH})^{n+1} \geq (H\frac{1}{n})^{n}$, $Cu_{H1} \geq C_{11}$. $Q.$ Boundeness of P_n : let define $\left(\frac{1}{n} + \frac{1}{n}\right)^{n+1}$ We know that $(H_{\overrightarrow{n}})$ >1 , so $C_{n} < \frac{1}{n}$. \circledast (et's think $n+1$ numbers, which are $(1-\frac{1}{n})$, ..., $(1-\frac{1}{n})$, 1 let's use AM-GM inequality. $\overline{n + \overline{imes}}$. $A M = \frac{n(l-\frac{1}{n})+1}{n!} = \frac{n}{n+1}$ $\left| \frac{n}{n+1} \right| \leq C n^{n+1}$

$$
\begin{array}{c}\n\begin{array}{c}\nG_{H_{2}} \left\{ \left(\frac{m}{m} \right)^{m} \right\}^{\frac{1}{m}} \\
\text{so, } \left(\frac{m}{m} \right)^{m} \geq \left(\frac{m}{m} \right)^{m} \geq \left(\frac{m}{m} \right)^{m} \\
\text{so, } \left(\frac{m}{m} \right)^{m} \geq \left(\frac{m}{m} \right)^{m} \geq \left(\frac{m}{m} \right)^{m}\n\end{array} \\
\text{which means } f_{M} \in \mathcal{F}_{M-1} \\
\text{which means } f_{M} \in \mathcal{F}_{M-1} \\
\text{We have, } \text{the same, } \text{the same,
$$

Calculus Series Convergence Tests

2.2. Continuity,
$$
7/6
$$

Thm 2.1. If $rac{1}{4+1}(\sqrt{2}-1)$, $rac{1}{4+1}(\sqrt{2}-1)$, then the following holds:
\n(a) $rac{1}{4+1}(\sqrt{2}-1)(\sqrt{2}-1)$
\n(b) $rac{1}{4+1}(\sqrt{2}-1)(\sqrt{2}-1)$
\n(c) If $L+3$, $L+2$
\n(d) $rac{1}{4+1}(\sqrt{2}-1)(\sqrt{2}-1)$
\n \therefore $\frac{1}{2}(\sqrt{2}-1)(\sqrt{2}-1)$
\n \therefore $\frac{1}{2}(\sqrt{2}-1)(\sqrt{2}-1)$
\n \therefore $\frac{1}{2}(\sqrt{2}-1)(\sqrt{2}-1)$
\n \therefore $\frac{1}{2}(\sqrt{2}-1)(\sqrt{2}-1)$, then $rac{1}{2}(\sqrt{2}-1)$
\n \therefore $\frac{1}{2}(\sqrt{2}-\sqrt{2}-1)$
\n $\frac{1}{2}(\sqrt{$

2.2. Continuity.7-1, 6.
\nThm. 2.5. The Infermediale Volume Theorem
\n(1-0.12, 321)
\nIf f is continuous on a closed interval [a,b],
\nthen f takes on all values between f(a) and f(b).
\n
$$
f(b)
$$

\n $f(c)$: continuous on [a,b],
\n $f(c)$
\nThen 2.6, The Exhemen Value Theorem (EVI) (314.31; 341)
\nThen f takes both a maximum value and
\na minimum value of some points in [a,b],
\n $f(c)$
\n f

2.6. Sequence of Flunctions and Their Limits. Let. A seguence of functions $:$ L ist of functions f_1, f_2, f_3, \cdots with a common domain D The sequence of functions for converges poinduise to a function $f_{\text{on}}D$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ (a) = $\frac{1}{2}$ $\frac{1$ (=> HaGD, HEDO, FNEW S.L. If $n>N$, $-$ then $|f_n(\infty) - f_{(\infty)}| < \epsilon$. The sequence of functions for converges uniformly $\frac{1}{2}$ function f on D
: VETO, $\frac{1}{2}NGM \leq k$. if $m > N$, then $|f_m(a)-f(a)| \leq \int_0^a a l(x) dx$ Thm. 2.11. Let $\{f_m\}$ be a sequence of functions, each continuous on the closed interval $[a,b]$. If $\{\frac{1}{m}\}$ converges uniformly to f on $[a,b]$, Thm. 2.12 . Suppose $\{f_n\}$, $\{g_n\}$ are uniformly convergent sequences of C_{D}

Correimants functions on L9.57, converges in the image of a random variable of a random variable,
$$
(a)
$$
.

\n(b) $\frac{f_m + g_n}{f_m}$ converges uniformly to $\frac{f+g}{f+g}$ on $[a,b]$.

\n(c) If $\frac{f+f}{f+g}$ converges uniformly to $\frac{1}{f_m} \rightarrow 0$.

\n(d) If h is a **avdimuous function** with range contained in [a,b], then g_n is a **converges uniformly** to g_n and in [a,b], then g_n is a **converges uniformly** to g_n is a **conform** or a closed interval contains the range of g_n and g_n , then g_n converges uniformly to g_n converges uniformly to g_n converges.

2.6. Sequences of Fumbions and Their Limits 7n16.
\nDaf. The square of functions
$$
f_{1m}^2
$$
 exist. then we define
\n \Rightarrow O' Partial Sams: $Sm = \frac{1}{5}r, \frac{1}{3}r, \frac{1}{3}r, \frac{m}{2} = \frac{m}{2}$
\nQ' Series: $\frac{m}{1000} = \frac{m}{100}$
\n $\frac{m}{1000}$ units $\frac{m}{100}$
\n $\frac{m}{1000}$ units $\frac{m}{1000}$
\n $\frac{m}{1000}$ units of average uniformly on D
\n $\frac{m}{1000}$
\n $\frac{m}{1000}$ units of $\frac{m}{1000}$ probability for $\frac{m}{1000}$
\n $\frac{m}{1000}$ units of $\frac{m}{1000}$ units $\frac{m}{1000}$
\n $\frac{m}{1000}$ for $\frac{1}{1000}$
\n $\frac{m}{1000}$ for $\frac{1}{1000}$
\n $\frac{m}{1000}$ for $\frac{1}{1000}$
\n $\$

2.6. Sequences of Fumbians and their Limits 70/4.
Thm. (by Problem 2.61).
Consider a power series $\frac{10}{200}$ and 1
Suppose $L \sim \frac{1}{200}$ $ I_{\text{in}} $ exists and is positive.
1. The Derivative and Driferendiation.
2. The Derivative and Driferendiation.
3. I. The Concept of Derivative
2. I. The Cancept of Derivative
2. I. The Limit $\frac{1}{100}$ exists.
2. I. The Limit $\frac{1}{100}$ exists.
2. I. The <i>Limit</i> $\frac{1}{100}$ exists.
2. I. The <i>Limit</i> $\frac{1}{100}$ exists.
2. I. The <i>Limit</i> $\frac{1}{100}$ exists.
2. I. The <i>Limit</i> $\frac{1}{100}$ exists.
2. I. The <i>Unit</i> $\frac{1}{100}$ exists.
2. I. The <i>Limit</i> $\frac{1}{100}$ exists.
2. I. The <i>Limit</i> $\frac{1}{100}$ exists.
2. I. The <i>limit</i> $\frac{1}{100}$ exists.
2. I. The <i>limit</i> $\frac{1}{100}$ exists.

I NM. S.I. H function is diffierentiable at a Implies the function is continuous at a. (X) Some Oses for the Derivatives. Speed = fate of change of distance as a function of time. position Velocity = $time$ \overline{c} $\overline{\mathscr{C}}$ horcanal $height$ " $Slope =$ $\overline{\mathcal{U}}$ amount of
electric charge Current = $time$ \overline{z}

3.2. Differential Rules.
\nThm. 3.2. Derivative of sums and constant multiples.
\nIf f and g are differentiable at d, and
\nc is any constant,
\n
$$
2\pi
$$
 of are differentiable at d, and
\n 2π of (d) - f(a) + g(a).
\n 2π (e) (d) = c f(a).
\n 2π (e) (e) (f) (f) = c f(a).
\n 2π (f) (g) = f(a) + g(a).
\n 2π (g) (h) = f(1) + g(2)g(h).
\n 2π (h) = f(1)g(h) + f'(2)g(h).
\n 2π (i) = f(1)g(h) + f'(2)g(h).
\n 2π (j) = f(1)g(h) = g(2)g(h).
\n 2π (k) = g(3)g(h) = -f(a).
\n 2π (l) = -f(a).

 $\left\{ \begin{array}{cc} \uparrow & \uparrow & \uparrow \\ \downarrow & \downarrow & \downarrow \\ \hline \uparrow & \downarrow & \downarrow \end{array} \right\}$ Thm3.6. Quotient Rule. If f and g are differentiable at x and 9(1)+0, then their Quotient is differentiable at 1) and $\left(\frac{f}{g}\right)'(d) = \frac{f'(a)g(d) - f(x)g'(a)}{\{g'(a)\}^2}$

3.2. Differnful Rules. Also.
\nThm 3.1. Chain Rule.
\nIf
$$
f
$$
 is difficultiable at gh) and g is differentiable
\nand h , then $f g$ is differentiable at h , and
\n $(f \cdot g)'(x) = f'(g \cdot g)$
\nThen 3.8. Power Rule for Redrindexppnends.
\nFor every rational number 140 , and
\n 60 even 170 , $(g')' = 1$ and
\n 60 even 170 , $(g')' = 1$ and
\n 60 even 170 , $(g')' = 1$ and
\n 70 even 170 , $(g')' = 1$ and
\n 70 cm² cm²

3.4. Derivatives of Trigonometric functions.
Thm 3.12. **Since**
$$
cos A
$$
 and $cos C = cos A$
Then 3.13. **Denote by** $\frac{1}{2}$ as solution of $3^{n}+3=0$
for which $1^{(n)}=0$ and $3^{n}+3=0$
for which $1^{(n)}=0$ and $3^{n}+3=0$
for which $1^{(n)}=0$ and $3^{n}+3=0$
 φ is $\sqrt{2n+3}=0$. multiply both sides by 47.
 $\Rightarrow 2^{n}+3^{n}+3+7^{n}=0$.
 $\Rightarrow 2^{n}+3^{n}+3+7^{n}=0$.
 $\Rightarrow 2^{n}+3^{n}+3+7^{n}=0$
 $\Rightarrow 3^{n}+3^{n}+3+7^{n}=0$
 $\Rightarrow 3^{n}+3^{n}+3^{n}=0$
 $\Rightarrow 3^{n}+3^{n}+3^{n}=0$
 $\Rightarrow 3^{n}+3^{n}+3^{n}=0$ for every n .
 $\Rightarrow 3^{n}+3^{n}+3^{n}=0$ for every n .
 $\Rightarrow 3^{n}+3^{n}+3^{n}=0$ for every n .
 $\Rightarrow 3^{n}+3^{n}=3^{n}$
 $\Rightarrow 3^{n}+3^{n}=3^{n}$
Then $\Rightarrow 3^{n}+3^{n}=3^{n}$
then $\Rightarrow 3^{n}+3^{n}=3^{n}$
then $\Rightarrow 3^{n}+3^{n}=3^{n}$
 $\Rightarrow 3^{n$

Thm.3.16. Suppose J. and J. are two solutions $0+$ $f' - f = 0$ and that there is a number C for which fi(C) = f2(c) and $-\frac{1}{1}(c) = \frac{1}{2}(c)$. Then $f(t)=f_1(t)$ for every t .

3.5. Derivatives of Power Series.
Thm. 3.17. Term-by-term differentiation.
If the power series
$$
f(x) = \sum_{n=0}^{\infty} a_n x^n
$$

converges on $-R < a < R$,
then f is differentiable on $(-R, R)$, and
 $f(a) = \sum_{n=1}^{\infty} n a_n x^{n-1}$.